There are many joinery options for drawers. Choosing what's right for a particular drawer project involves a number of factors: appearance, durability, the equipment you have available, and the number of drawers you need to make.

Dovetails will always be popular, of course. (See p. 40.) But for the pair of drawers required for my Go gameboard (p. 50), I decided to use a different type of interlocking joint that I could cut quickly and precisely on my tablesaw.

A locking drawer joint provides a strong corner connection that also looks attractive in many applications. There are specialized router bits you can use to cut this type of joint on a router table, but the technique I'll demonstrate here only requires a stack dado and a zero-clearance throat plate. The dimensions and setup details given are suitable for drawers with \(\frac{3}{4}'' \)-thick fronts and \(\frac{1}{2}'' \)-thick sides, a combination that's fairly common. Make sure your drawer sides and fronts are milled to uniform thicknesses before you begin. If you are using \(\frac{1}{2}'' \) plywood for drawer sides instead of solid wood, use only high-quality, void-free material to ensure strong joints.

Rout bottom grooves first, then get set to make 3 cuts

Start by planing drawer fronts and sides to uniform thicknesses. Prepare some scrap stock so you can test your tablesaw setups. You'll also need to make a backer block for your first cuts in the drawer fronts, as shown on the facing page. Attach a tall auxiliary rip fence to your saw's rip fence, and make sure it's perpendicular to the table surface. Then set up your stack dado. Use only the two outer blades—with shims inserted if necessary—to create a dado width of \(\frac{1}{4}'' \).

Making the locking drawer joint requires three cuts. But I suggest grooving fronts and sides for drawer bottoms before making any corner joint cuts. This will make it easy to keep track of the inside and outside faces of your drawer parts.

1st CUT: Make a \(\frac{1}{4}'' \)-wide groove in the end of drawer front. Groove depth = Side thickness

2nd CUT: Dado the side to match the dimensions, and position of the inner tongue.

3rd CUT: Replace your dado cutter with a finish-cutting blade. Trim the inner tongue to match the depth of the side dado.
A fine way to cut corners. This locking corner joint combines the strength of a mechanical connection with good surface area for glue. Using contrasting wood species for drawer fronts and sides shows off the joint’s interlocked construction.

Slot the fronts first. Use a tall auxiliary fence and a notched pushblock to keep the drawer front vertical, as shown here. The pushblock will also prevent tearout. For these slots, the dado is set to make a \(\frac{1}{4} \)"-wide cut, and cutting depth equals side thickness (\(\frac{1}{4} \)""). Position the fence exactly \(\frac{1}{4} \)" from the cutter, and make sure that the outside face of the drawer front runs against the fence.

Rip fence and miter gauge guide the sides. After all drawer fronts are slotted, change the dado’s cutting depth to \(\frac{1}{4} \)", and keep the rip fence in the same position. Dado each side by running it against the miter gauge and rip fence. Use a backer block as shown.

Crosscut to create a tongue. To complete the corner joint, replace the dado cutter with a finish-cutting blade and trim the inner ends of each drawer front so that the resulting tongues fit in the dadoed sides.

Photos: Larry Hamel-Lambert; Illustration: Christopher Mills